organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The 2:1 cocrystal of 2,6-ditriazol-4-ylpyridine and benzene-1,2,4,5-tetracarboxylic acid

Wei Li,^a Min Shao,^b Hong-Jiang Liu^a and Ming-Xing Li^a*

^aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and ^bInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, People's Republic of China Correspondence e-mail: mx_li@mail.shu.edu.cn

Received 10 June 2007; accepted 12 June 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.099; data-to-parameter ratio = 11.0.

The hydrothermal reaction of 2,6-ditriazol-4-ylpyridine, benzene-1,2,4,5-tetracarboxylic acid and ZnSO₄·7H₂O led to the formation of the cocrystal compound 2,6-ditriazol-4ylpyridine-benzene-1,2,4,5-tetracarboxylic acid (2/1), $2C_9H_7N_7\cdot C_{10}H_6O_8$, in which hydrogen-bonding and $\pi-\pi$ stacking interactions (3.404 Å) assemble the molecules into a three-dimensional supramolecular framework. The acid molecule lies on an inversion centre.

Related literature

For related literature, see: Wang, Xi et al. (2007); Wang, Ding et al. (2007); Xia et al. (2007).

Experimental

Crystal data $2C_9H_7N_7 \cdot C_{10}H_6O_8$ $M_r = 680.58$ Monoclinic, $P2_1/c$

a = 9.0972 (12) Åb = 15.799 (2) Åc = 10.0741 (13) Å

$\beta = 100.523 \ (2)^{\circ}$	
V = 1423.6 (3) Å ³	
Z = 2	
Mo $K\alpha$ radiation	

Data collection

Bruker SMART CCD diffract-
ometer
Absorption correction: none
7302 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.099$ S = 1.042520 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O2 - H2A \cdots N3^{i} \\ O3 - H3A \cdots N7^{ii} \end{array}$	0.82	1.82	2.639 (2)	172
	0.82	1.84	2.656 (2)	179

 $\mu = 0.12 \text{ mm}^{-1}$ T = 273 (2) K

 $R_{\rm int} = 0.026$

229 parameters

 $\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

2520 independent reflections

1971 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x + 1, y, z.

Data collection: *APEX* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

The project was supported by the Development Foundation of Shanghai Municipal Education Commission, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2328).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). *SHELXTL* (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, W. H., Xi, P. H., Su, X. Y., Lan, J. B., Mao, Z. H., You, J. S. & Xie, R. G. (2007). Cryst. Growth Des. 7, 741–746.
- Wang, Y., Ding, B., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Inorg. Chem. 46, 2002–2010.
- Xia, C. K., Lu, C. Z., Yuan, D. Q., Zhang, Q. Z., Wu, X. Y., Zhang, J. J. & Wu, D. M. (2007). J. Mol. Struct. 831, 195–202.

supplementary materials

Acta Cryst. (2007). E63, o3224 [doi:10.1107/S1600536807028759]

The 2:1 cocrystal of 2,6-ditriazol-4-ylpyridine and benzene-1,2,4,5-tetracarboxylic acid

W. Li, M. Shao, H.-J. Liu and M.-X. Li

Comment

Recently, there has been a growing interest in coordination polymers based on 1,2,4,5-benzenetetracarboxylate and 2,6ditriazol-4-ylpyridine ligands (Wang, Xi, Su, Lan, Mao, You & Xie, 2007; Xia *et al.*, 2007). In the course of preparing mixedligand (ternary) complexes containing such organic ligands and metal ions, a new cocrystal compound of 2,6-ditriazol-4ylpyridine (dtp) and benzene-1,2,4,5-tetracarboxylic acid (H₄Btec) was obtained which assembled by H-bonding and π - π stacking interaction. Hydrogen bonding and π - π interaction are important in the areas of supramolecular chemistry, crystal engineering, and biological recognition (Wang, Ding, Cheng, Liao & Yan, 2007). Herein we report the supramolecular framework of the title compound (C₉H₇N₇)(C₁₀H₆O₈)_{1/2}, (I).

As shown in Fig. 1, the asymmetric structural unit contains one dtp molecule and half of H₄Btec molecule. Bond lengths and angles are normal as expected. In dtp molecule, one triazole group is nearly planar with the pyridyl ring (dihedral angle of 3.1 (1)°), while the other triazole group has a dihedral angle of 33.5 (3)° with the pyridyl ring plane. Each carboxyl group of H₄Btec links a triazole N atom through H-bonding interaction. The distance between the aromatic rings of adjacent dtp and H₄Btec is *ca* 3.404 Å, which indicates the presence of some π - π stacking interaction. The intermolecular H-bonding and π - π stacking interaction assemble the molecules into a three-dimensional supramolecular framework (Fig. 2).

Experimental

A mixture of dtp (0.10 mmol), H_4 betc (0.10 mmol), $ZnSO_47H_2O$ (0.20 mmol), and water (8 ml) was sealed in a Teflon-lined stainless steel vessel, which was heated at 393 K for 4 days and cooled to room temperature at a rate of 10 K/h. Light yellow crystals suitable for X-ray diffraction were obtained.

Refinement

The H atoms were located geometrically, with C—H = 0.93 and O—H = 0.82 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. View of (I), showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2. A crystal packing diagram of compound (I).

2,6-ditriazol-4-ylpyridine-benzene-1,2,4,5-tetracarboxylic acid (2/1)

Crystal data	
$2C_9H_7N_7{\cdot}C_{10}H_6O_8$	$F_{000} = 700$
$M_r = 680.58$	$D_{\rm x} = 1.588 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2052 reflections
<i>a</i> = 9.0972 (12) Å	$\theta = 2.4 - 24.7^{\circ}$
<i>b</i> = 15.799 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 10.0741 (13) Å	T = 273 (2) K
$\beta = 100.523 \ (2)^{\circ}$	Block, light-yellow
$V = 1423.6 (3) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 2	

Data collection

Bruker SMART CCD diffractometer	1971 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
Monochromator: graphite	$\theta_{max} = 25.1^{\circ}$
T = 273(2) K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: none	$k = -15 \rightarrow 18$
7302 measured reflections	$l = -10 \rightarrow 11$
2520 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 + 0.4345P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.099$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
2520 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
229 parameters	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.36742 (16)	0.16599 (9)	0.69912 (15)	0.0334 (4)
N2	0.61300 (16)	0.12340 (10)	0.75896 (15)	0.0364 (4)
N5	0.11742 (16)	0.19751 (10)	0.62929 (15)	0.0356 (4)
C5	0.49874 (19)	0.18189 (11)	0.77677 (18)	0.0332 (4)
C8	0.0829 (2)	0.12795 (12)	0.55123 (19)	0.0418 (5)
H8	0.1489	0.0842	0.5430	0.050*
N3	0.82721 (18)	0.05862 (12)	0.77901 (18)	0.0501 (5)
C11	0.64839 (19)	-0.02667 (12)	0.03665 (17)	0.0335 (4)
N4	0.72429 (18)	0.01326 (11)	0.68780 (17)	0.0476 (5)
C12	0.59825 (19)	0.04348 (12)	0.09964 (17)	0.0333 (4)
N7	-0.05551 (18)	0.13098 (11)	0.48951 (17)	0.0470 (5)
C1	0.25722 (19)	0.21877 (11)	0.71126 (18)	0.0326 (4)
C14	0.54929 (19)	-0.06941 (12)	-0.06162 (17)	0.0349 (4)
H14	0.5824	-0.1165	-0.1030	0.042*
C7	0.5986 (2)	0.05369 (12)	0.67899 (19)	0.0405 (5)
H7	0.5095	0.0369	0.6245	0.049*
N6	-0.11620 (19)	0.20543 (12)	0.52764 (19)	0.0579 (5)
C10	0.8071 (2)	-0.05768 (14)	0.06808 (19)	0.0401 (5)
C13	0.6961 (2)	0.09339 (13)	0.20797 (19)	0.0371 (5)
C4	0.5271 (2)	0.24769 (13)	0.86786 (19)	0.0400 (5)
H4	0.6202	0.2550	0.9225	0.048*
C6	0.7595 (2)	0.12313 (14)	0.8190 (2)	0.0490 (6)
Н6	0.8046	0.1636	0.8802	0.059*
C2	0.2718 (2)	0.28829 (12)	0.79400 (19)	0.0410 (5)
H2	0.1920	0.3247	0.7965	0.049*
C3	0.4101 (2)	0.30172 (13)	0.87337 (19)	0.0439 (5)
Н3	0.4245	0.3480	0.9314	0.053*
C9	-0.0114 (2)	0.24308 (15)	0.6100 (2)	0.0529 (6)
Н9	-0.0225	0.2948	0.6510	0.064*
03	0.72577 (16)	0.05287 (9)	0.32395 (13)	0.0483 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

НЗА	0.7924	0.0777	0.3751	0.073*
O2	0.89983 (15)	-0.00163 (10)	0.13212 (17)	0.0637 (5)
H2A	0.9826	-0.0232	0.1549	0.096*
O4	0.73355 (17)	0.16479 (10)	0.19046 (15)	0.0566 (4)
01	0.84301 (16)	-0.12654 (10)	0.03551 (17)	0.0615 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0241 (8)	0.0378 (9)	0.0356 (8)	-0.0001 (7)	-0.0019 (6)	-0.0005 (7)
N2	0.0213 (8)	0.0418 (9)	0.0426 (9)	0.0003 (7)	-0.0032 (6)	0.0017 (7)
N5	0.0229 (8)	0.0405 (9)	0.0395 (9)	0.0033 (7)	-0.0043 (6)	-0.0019 (7)
C5	0.0249 (9)	0.0364 (10)	0.0359 (10)	-0.0018 (8)	-0.0008 (7)	0.0059 (8)
C8	0.0310 (11)	0.0417 (12)	0.0477 (12)	0.0029 (9)	-0.0058 (9)	-0.0059 (10)
N3	0.0244 (9)	0.0629 (12)	0.0597 (11)	0.0039 (8)	-0.0012 (8)	-0.0004 (10)
C11	0.0228 (9)	0.0433 (11)	0.0336 (10)	0.0020 (8)	0.0025 (8)	0.0056 (8)
N4	0.0318 (9)	0.0533 (11)	0.0558 (11)	0.0051 (8)	0.0029 (8)	0.0003 (9)
C12	0.0241 (9)	0.0435 (11)	0.0314 (10)	-0.0018 (8)	0.0025 (7)	0.0037 (8)
N7	0.0323 (9)	0.0533 (11)	0.0498 (10)	0.0010 (8)	-0.0074 (8)	-0.0056 (9)
C1	0.0247 (9)	0.0374 (10)	0.0333 (10)	0.0001 (8)	-0.0007 (7)	0.0027 (8)
C14	0.0280 (10)	0.0415 (11)	0.0352 (10)	0.0025 (8)	0.0054 (8)	0.0004 (8)
C7	0.0281 (11)	0.0450 (12)	0.0453 (12)	0.0000 (9)	-0.0010 (8)	-0.0025 (10)
N6	0.0323 (10)	0.0647 (13)	0.0680 (12)	0.0101 (9)	-0.0137 (9)	-0.0146 (10)
C10	0.0261 (10)	0.0540 (13)	0.0390 (11)	0.0035 (9)	0.0028 (8)	0.0021 (10)
C13	0.0236 (10)	0.0454 (12)	0.0411 (11)	-0.0012 (9)	0.0028 (8)	0.0015 (9)
C4	0.0288 (10)	0.0459 (12)	0.0404 (11)	-0.0052 (9)	-0.0064 (8)	-0.0010 (9)
C6	0.0257 (11)	0.0601 (14)	0.0563 (13)	-0.0001 (10)	-0.0050 (9)	-0.0063 (11)
C2	0.0368 (11)	0.0416 (12)	0.0425 (11)	0.0051 (9)	0.0017 (9)	-0.0053 (9)
C3	0.0449 (12)	0.0440 (12)	0.0395 (11)	-0.0044 (10)	-0.0006 (9)	-0.0076 (9)
C9	0.0305 (11)	0.0556 (14)	0.0660 (14)	0.0114 (10)	-0.0090 (10)	-0.0137 (11)
O3	0.0453 (9)	0.0526 (9)	0.0406 (8)	-0.0104 (7)	-0.0091 (6)	0.0017 (7)
O2	0.0222 (7)	0.0780 (11)	0.0839 (11)	0.0094 (7)	-0.0086 (8)	-0.0231 (9)
O4	0.0513 (9)	0.0497 (10)	0.0638 (10)	-0.0160 (8)	-0.0024 (7)	0.0079 (8)
O1	0.0362 (9)	0.0576 (10)	0.0872 (12)	0.0137 (7)	0.0018 (8)	-0.0096 (9)

Geometric parameters (Å, °)

N1—C1	1.327 (2)	N7—N6	1.383 (2)
N1—C5	1.327 (2)	C1—C2	1.371 (3)
N2—C7	1.357 (2)	C14—C12 ⁱ	1.389 (2)
N2—C6	1.359 (2)	C14—H14	0.9300
N2—C5	1.426 (2)	С7—Н7	0.9300
N5—C8	1.355 (2)	N6—C9	1.290 (3)
N5—C9	1.359 (2)	C10—O1	1.199 (2)
N5—C1	1.424 (2)	C10—O2	1.309 (2)
C5—C4	1.380 (3)	C13—O4	1.201 (2)
C8—N7	1.299 (2)	C13—O3	1.316 (2)
C8—H8	0.9300	C4—C3	1.373 (3)

D—H…A	<i>D</i> —Н	H···A	D···A D—H···A
Hydrogen-bond geometry (Å, °)			
Symmetry codes: (i) $-x+1$, $-y$, $-z$.			
C12 ¹ —C14—H14	119.2		
C11—C14—H14	119.2	C10—O2—H2A	109.5
C11-C14-C12 ⁱ	121.52 (18)	C13—O3—H3A	109.5
C2C1N5	121.23 (17)	N5—C9—H9	124.3
N1—C1—N5	114.08 (16)	N6—C9—H9	124.3
N1—C1—C2	124.69 (17)	N6-C9-N5	111.38 (19)
C8—N7—N6	107.43 (16)	С2—С3—Н3	119.6
C11—C12—C13	123.31 (16)	С4—С3—Н3	119.6
C14 ⁱ —C12—C13	117.42 (17)	C4—C3—C2	120.86 (19)
C14 ⁱ —C12—C11	119.27 (16)	С3—С2—Н2	121.5
C7—N4—N3	105.71 (17)	C1—C2—H2	121.5
C12—C11—C10	123.01 (16)	C1—C2—C3	116.90 (18)
C14—C11—C10	117.78 (17)	N2—C6—H6	124.8
C14—C11—C12	119.20 (16)	N3—C6—H6	124.8
C6—N3—N4	108.15 (16)	N3—C6—N2	110.38 (19)
N5—C8—H8	124.8	C5—C4—H4	121.8
N7—C8—H8	124.8	С3—С4—Н4	121.8
N7—C8—N5	110.47 (17)	C3—C4—C5	116.33 (17)
C4—C5—N2	121.33 (16)	O3—C13—C12	112.86 (16)
N1—C5—N2	113.67 (16)	O4—C13—C12	122.26 (17)
N1—C5—C4	124.99 (17)	O4—C13—O3	124.71 (18)
C9—N5—C1	127.83 (17)	O2-C10-C11	113.02 (17)
C8—N5—C1	128.01 (16)	O1-C10-C11	122.52 (18)
C8—N5—C9	104.15 (16)	O1—C10—O2	124.45 (18)
C6—N2—C5	128.60 (17)	C9—N6—N7	106.57 (16)
C7—N2—C5	127.36 (15)	N2—C7—H7	124.1
C7—N2—C6	104.03 (16)	N4—C7—H7	124 1
C1-N1-C5	116.15(16)	N4N2	111 73 (17)
C12—C13	1.500 (2)	O2—H2A	0.8200
C12—C14 ⁱ	1.389 (2)	ОЗ—НЗА	0.8200
N4—C7	1.299 (2)	С9—Н9	0.9300
C11—C10	1.503 (2)	С3—Н3	0.9300
C11—C12	1.394 (3)	C2—H2	0.9300
C11—C14	1.387 (2)	C2—C3	1.379 (3)
N3—N4	1 386 (2)	С6—Н6	0.9300
N3—C6	1 293 (3)	C4—H4	0.9300

0.82

1.82

1.84

O3—H3A····N7 ⁱⁱⁱ	0.82
Symmetry codes: (ii) $-x+2$, $-y$, $-z+1$; (iii) $x+1$, y , z .	

O2—H2A…N3ⁱⁱ

2.639 (2)

2.656 (2)

172

179

